Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(13)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37782254

RESUMO

The equilibrium association of transmembrane proteins plays a fundamental role in membrane protein function and cellular signaling. While the study of the equilibrium binding of single pass transmembrane proteins has received significant attention in experiment and simulation, the accurate assessment of equilibrium association constants remains a challenge to experiment and simulation. In experiment, there remain wide variations in association constants derived from experimental studies of the most widely studied transmembrane proteins. In simulation, state-of-the art methods have failed to adequately sample the thermodynamically relevant structures of the dimer state ensembles using coarse-grained models. In addition, all-atom force fields often fail to accurately assess the relative free energies of the dimer and monomer states. Given the importance of this fundamental biophysical process, it is essential to address these shortcomings. In this work, we establish an effective computational protocol for the calculation of equilibrium association constants for transmembrane homodimer formation. A set of transmembrane protein homodimers, used in the parameterization of the MARTINI v3 force field, are simulated using metadynamics, based on three collective variables. The method is found to be accurate and computationally efficient, providing a standard to be used in the future simulation studies using coarse-grained or all-atom models.


Assuntos
Proteínas de Membrana , Polímeros , Simulação por Computador
2.
J Biol Chem ; 299(10): 105194, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633332

RESUMO

Complex glycans serve essential functions in all living systems. Many of these intricate and byzantine biomolecules are assembled employing biosynthetic pathways wherein the constituent enzymes are membrane-associated. A signature feature of the stepwise assembly processes is the essentiality of unusual linear long-chain polyprenol phosphate-linked substrates of specific isoprene unit geometry, such as undecaprenol phosphate (UndP) in bacteria. How these enzymes and substrates interact within a lipid bilayer needs further investigation. Here, we focus on a small enzyme, PglC from Campylobacter, structurally characterized for the first time in 2018 as a detergent-solubilized construct. PglC is a monotopic phosphoglycosyl transferase that embodies the functional core structure of the entire enzyme superfamily and catalyzes the first membrane-committed step in a glycoprotein assembly pathway. The size of the enzyme is significant as it enables high-level computation and relatively facile, for a membrane protein, experimental analysis. Our ensemble computational and experimental results provided a high-level view of the membrane-embedded PglC/UndP complex. The findings suggested that it is advantageous for the polyprenol phosphate to adopt a conformation in the same leaflet where the monotopic membrane protein resides as opposed to additionally disrupting the opposing leaflet of the bilayer. Further, the analysis showed that electrostatic steering acts as a major driving force contributing to the recognition and binding of both UndP and the soluble nucleotide sugar substrate. Iterative computational and experimental mutagenesis support a specific interaction of UndP with phosphoglycosyl transferase cationic residues and suggest a role for critical conformational transitions in substrate binding and specificity.


Assuntos
Membrana Celular , Poliprenois , Transferases , Ligantes , Proteínas de Membrana , Fosfatos , Poliprenois/metabolismo , Transferases/química , Fosfatos de Poli-Isoprenil/química , Membrana Celular/química , Bactérias/química , Bactérias/citologia
3.
Opt Lett ; 48(11): 2937-2940, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262248

RESUMO

Deterministic optical manipulation of fluorescent nanodiamonds (FNDs) in fluids has emerged as an experimental challenge in multimodal biological imaging. Designing and developing nano-optical trapping strategies to serve this purpose is an important task. In this Letter, we show how chemically prepared gold nanoparticles and silver nanowires can facilitate an opto-thermoelectric force to trap individual entities of FNDs using a long working distance lens, low power-density illumination (532-nm laser, 12 µW/µm2). Our trapping configuration combines the thermoplasmonic fields generated by individual plasmonic nanoparticles and the opto-thermoelectric effect facilitated by the surfactant to realize a nano-optical trap down to a single FND that is 120 nm in diameter. We use the same trapping excitation source to capture the spectral signatures of single FNDs and track their position. By tracking the FND, we observe the differences in the dynamics of the FND around different plasmonic structures. We envisage that our drop-casting platform can be extrapolated to perform targeted, low-power trapping, manipulation, and multimodal imaging of FNDs inside biological systems such as cells.

4.
J Infect Dev Ctries ; 16(10): 1637-1642, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36332218

RESUMO

INTRODUCTION: Dengue is an emerging vector-borne public health threat and characterization at the molecular level is important for proper management of the disease. The aim of the study is to examine the diversity of the dengue viral serotypes from a hilly mountainous region of Northeast India. METHODOLOGY: Thirty-six blood samples that were positive for dengue virus IgM antibodies identified by the enzyme-linked immunosorbent assay (ELISA) method were collected and quantified for the IL6 gene expression by using reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS: All the patients had dengue hemorrhagic fever (DHF); 12 samples had a monotypic infection and 14 samples had dual infection with various dengue virus (DENV) serotypes; one sample had triple infection with DENV-1, DENV-2, and DENV-3. CONCLUSIONS: This study identified DENV-1 as the major serotype in the state of Mizoram and it is the first report on the molecular typing of the dengue virus from the hilly mountainous state located in the Indo-Burma region bordering Myanmar and Bangladesh.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Sorogrupo , Ensaio de Imunoadsorção Enzimática , Tipagem Molecular , Índia/epidemiologia , Anticorpos Antivirais
5.
J Chem Theory Comput ; 18(6): 3961-3971, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35580264

RESUMO

Protein association in lipid membranes is fundamental to membrane protein function and of great biomedical relevance. All-atom and coarse-grained models have been extensively used to understand the protein-protein interactions in the membrane and to compute equilibrium association constants. However, slow translational and rotational diffusion of protein in membrane presents challenges to the effective sampling of conformations defining the ensembles of free and bound states contributing to the association equilibrium and the free energy of dimerization. We revisit the homodimerization equilibrium of the TM region of glycophorin A. Conformational sampling is performed using umbrella sampling along previously proposed one-dimensional collective variables and compared with sampling over a two-dimensional collective variable space using the MARTINI v2.2 force field. We demonstrate that the one-dimensional collective variables suffer from restricted sampling of the native homodimer conformations leading to a biased free energy landscape. Conversely, simulations along the two-dimensional collective variable effectively characterize the thermodynamically relevant native and non-native interactions contributing to the association equilibrium. These results demonstrate the challenges associated with accurately characterizing binding equilibria when multiple poses contribute to the bound state ensemble.


Assuntos
Proteínas de Membrana , Simulação de Dinâmica Molecular , Entropia , Proteínas de Membrana/química , Conformação Molecular , Termodinâmica
6.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389679

RESUMO

Lipid-coated noble metal nanoparticles (L-NPs) combine the biomimetic surface properties of a self-assembled lipid membrane with the plasmonic properties of a nanoparticle (NP) core. In this work, we investigate derivatives of cholesterol, which can be found in high concentrations in biological membranes, and other terpenoids, as tunable, synthetic platforms to functionalize L-NPs. Side chains of different length and polarity, with a terminal alkyne group as Raman label, are introduced into cholesterol and betulin frameworks. The synthesized tags are shown to coexist in two conformations in the lipid layer of the L-NPs, identified as "head-out" and "head-in" orientations, whose relative ratio is determined by their interactions with the lipid-water hydrogen-bonding network. The orientational dimorphism of the tags introduces orthogonal functionalities into the NP surface for selective targeting and plasmon-enhanced Raman sensing, which is utilized for the identification and Raman imaging of epidermal growth factor receptor-overexpressing cancer cells.


Assuntos
Lipídeos/química , Lipossomos/química , Nanopartículas Metálicas/química , Nanopartículas/química , Química Click , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular
7.
J Chem Theory Comput ; 17(4): 2513-2521, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33720709

RESUMO

The MARTINI model is a widely used coarse-grained force field popular for its capacity to represent a diverse array of complex biomolecules. However, efforts to simulate increasingly realistic models of membranes, involving complex lipid mixtures and multiple proteins, suggest that membrane protein aggregates are overstabilized by the MARTINI v2.2 force field. In this study, we address this shortcoming of the MARTINI model. We determined the free energy of dimerization of four transmembrane protein systems using the nonpolarizable MARTINI model. Comparison with experimental FRET-based estimates of the dimerization free energy was used to quantify the significant overstabilization of each protein homodimer studied. To improve the agreement between simulation and experiment, a single uniform scaling factor, α, was used to enhance the protein-lipid Lennard-Jones interaction. A value of α = 1.04-1.045 was found to provide the best fit to the dimerization free energies for the proteins studied while maintaining the specificity of contacts at the dimer interface. To further validate the modified force field, we performed a multiprotein simulation using both MARTINI v2.2 and the reparameterized MARTINI model. While the original MARTINI model predicts oligomerization of protein into a single aggregate, the reparameterized MARTINI model maintains a dynamic equilibrium between monomers and dimers as predicted by experimental studies. The proposed reparameterization is an alternative to the standard MARTINI model for use in simulations of realistic models of a biological membrane containing diverse lipids and proteins.


Assuntos
Glicoforinas/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas/química , Agregados Proteicos , Termodinâmica
8.
PLoS One ; 14(10): e0219693, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31577808

RESUMO

Acinetobacter baumannii, has been developing resistance to even the last line of drugs. Antimicrobial peptides (AMPs) to which bacteria do not develop resistance easily may be the last hope. A few independent experimental studies have designed and studied the activity of AMPs on A. baumannii, however the number of such studies are still limited. With the goal of developing a rational approach to the screening of AMPs against A. baumannii, we carefully curated the drug activity data from 75 cationic AMPs, all measured with a similar protocol, and on the same ATCC 19606 strain. A quantitative model developed and validated with a part of the data. While the model may be used for predicting the activity of any designed AMPs, in this work, we perform an in silico screening for the entire database of naturally occurring AMPs, to provide a rational guidance in this urgently needed drug development.


Assuntos
Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Simulação por Computador , Modelos Biológicos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Avaliação Pré-Clínica de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...